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Abstract 

The physical, biological, and chemical properties of a river are directly influenced by its river water 
temperature (RWT), which also controls the survival and fitness of all aquatic organisms.  Machine 
Learning (ML) gained popularity because of its ability to model complex and nonlinearities between RWT 
and its predictors compared to process-based models that require large data. The present study 
demonstrates a new ML approach, Extreme Gradient Boosting (XGBoost), to predict accurate RWT 
estimates with the most appropriate form of AT. Further, the proposed XGBoost results are compared with 
the Support Vector Regressor (SVR) model. The proposed modelling framework's effectiveness is 
demonstrated with a tropical river system of India, Tunga-Bhadra River, as a case study. Results indicate 
that the XGBoost results are better than SVR for RWT prediction. The study demonstrates how ML methods 
can be used to generate accurate RWT predictions in river water quality modelling. 
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1. INTRODUCTION 

Rivers and their ecosystems rely on water quality, health and proper functioning. Predicting river water 
quality (RWQ) variables has become essential for various environmental, hydrological, and ecological 
applications (Zhu & Piotrowski, 2020). Altered temperature, precipitation, and runoff patterns can impact 
key RWQ indicators such as River Water Temperature (RWT), Dissolved Oxygen (DO), pH, nutrient 
balance, and contaminant presence (Sinokrot & Stefan, 1993). For example, the rate of chemical reactions 
typically increases at higher RWT under elevated air temperatures (Rajesh & Rehana, 2022). The rising 
RWT can deplete oxygen levels, potentially disrupting aquatic habitats, harming biodiversity, and leading 
to the decline of sensitive species. Additionally, RWT is a key indicator in RWQ and aquatic life, 
influencing DO levels, algal growth, and overall aquatic production (Feigl et al., 2021). Predicting RWT is 
essential for safeguarding river ecosystems, public health, scientific advancement, and promoting 
sustainable progress (Chapra, 1998). 
 
Predicting RWT has traditionally relied on physically based models like Delft3D, Soil and Water 
Assessment Tool (SWAT) and QUAL2K (Wang et al., 2022). Recently, models like Air2Stream (Shrestha 
& Pesklevits, 2022), Temperature Duration Curve (TDC) (Ouarda et al., 2022), and other process-based 
models have also been utilized (Wang et al., 2022). These models require detailed site-specific data, 
including solar radiation, streamflow, etc. (Feigl et al., 2021).  While physical models offer accurate results, 
they rely heavily on such detailed data. In contrast, statistical models require fewer input variables, making 
them suitable for ungauged river systems, but they struggle to describe nonlinear characteristics accurately 
(Wang et al., 2022). To address these limitations, Machine Learning (ML) techniques offer a promising 
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alternative by effectively handling nonlinear relationships and requiring minimal data inputs. Data-driven 
algorithms, like ML models with minimal data inputs (such as AT), can effectively address data sparsity 
issues in simulating RWT. 
In recent years, Artificial Neural Networks (ANN) (Qiu et al., 2020), Random Forest (RF) models (Rajesh 
& Rehana, 2021), K-nearest neighbors (KNN) approach (Gavahi et al., 2019), Support vector regression 
(SVR) (Rehana, 2019) have garnered significant attention for RWT prediction. To this end, numerous 
studies have utilized ML models for predicting RWT. However, selecting the appropriate ML model is 
important, as the results are heavily influenced by the specific model during modelling.  

2. STUDY AREA AND DATA 

The RWT modelling was conducted for the Tunga River at Shimoga, which merges with the Bhadra River 
to form the Tunga-Bhadra River, a major tributary of the Krishna River basin in India (Figure 1). Observed 
mean air (water) temperatures was 24.78°C (27.54°C), with standard deviations of 2.77°C (2.66°C), 
respectively. Data from January 1, 1989, to January 1, 2004, was obtained from the Central Water 
Commission (CWC) and Advanced Centre for Integrated Water Resources Management (ACIWRM). The 
Tunga-Bhadra River is significantly impacted by climate change, experiencing increased RWTs and 
discharges, and is one of India's most polluted rivers due to municipal and industrial effluents (Rehana & 
Mujumdar, 2012) (CPCB, 2019). 

 

Figure 1. Location map of Tunga-Bhadra River and Shimoga station, India. 
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3. METHODOLOGY 

The proposed model includes data pre-processing, identifying the model parameters, and modelling with 
performance measures at daily and monthly timescale (Figure 2). Particularly, this work explores XGBoost 
technique for prediction of RWT. Five statistical measures, including the Nash-Sutcliffe efficiency (NSE), 
Kling–Gupta efficiency (KGE), RMSE-observations standard deviation ratio (RSR), the root mean squared 
error (RMSE) are considered to measure the performances of ML model. In Rajesh & Rehana (2021), these 
metrics are explained in detail. 

3.1. Extreme Gradient Boosting Regressor (XGBoost) 
Extreme Gradient Boosting (XGBoost) is an advanced implementation of gradient boosting that optimizes 
the performance of the model and has gained immense popularity in recent years. XGBoost is an ensemble 
learning method that leverages second-order Taylor expansion for loss function approximation to optimize 
the tree structure and reduce overfitting (Chen & Guestrin, 2016). The XGBoost algorithm iteratively 
improves the model by computing gradients of the loss function with respect to current predictions, fitting 
a base learner to these gradients, and updating the model with an optimal step length while applying 
regularization. It incorporates various regularization techniques, i.e., L1 (regularization adds a penalty equal 
to the absolute value of the magnitude of coefficients), and L2 (regularization adds a penalty equal to the 
square of the magnitude of coefficients) to improve performance. The model parameters, inputs, and 
algorithm are described as follows. 
Parameters: G = Model, zi = Input set, ti = Output set of G(zi), J = Loss function, fm = Base learner function 
at stage m, 𝛿𝛿𝑚𝑚  = Step length, sim = Pseudo residual, k = number of samples, 𝜇𝜇= Regularization parameter, 
𝜗𝜗= Minimum loss reduction to make a further partition, 𝜌𝜌 = L1 regularization term on weights, 𝜎𝜎 = L2 
regularization term on weights. 
Inputs: Inputs to the XGBoost are the number of iterations (P), differentiable loss function J (t, G(z))), 
training dataset for {(zi, ti )} for i=1 to k, and hyperparameters 𝜇𝜇,𝜗𝜗,𝜌𝜌,𝜎𝜎. 
 
Algorithm (Chen & Guestrin, 2016): 

1. Initialize the model with a constant prediction: 
𝐺𝐺0(𝑧𝑧)  =  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡  ∑ 𝐽𝐽(𝑡𝑡ᵢ, 𝜇𝜇)𝑘𝑘

𝑖𝑖=1        (1) 
2. For m =1 to P, repeat:  

a. Compute the gradients (pseudo-residuals (𝑠𝑠𝑖𝑖𝑚𝑚)): 
𝑠𝑠𝑖𝑖𝑚𝑚  =  −  �𝜕𝜕𝜕𝜕(𝑡𝑡ᵢ,𝐺𝐺(𝑧𝑧ᵢ))

𝜕𝜕𝐺𝐺(𝑧𝑧ᵢ)
�  for i = 1,…,k                           (2) 

where 𝐺𝐺(𝑧𝑧) = 𝐺𝐺𝑚𝑚−1(𝑧𝑧) 
b. Fit a base learner fm(z) is pseudo residuals {(zi, sim)} for i=1 to k:  

𝑓𝑓𝑚𝑚(𝑧𝑧) ← train (zi, sim)        (3) 
c. Compute the optimal multiplier 𝛿𝛿𝑚𝑚: 

𝛿𝛿𝑚𝑚  =  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎  ∑ 𝐽𝐽(𝑡𝑡ᵢ,𝐺𝐺𝑚𝑚−1(𝑧𝑧ᵢ) +  𝛿𝛿𝑓𝑓𝑚𝑚(𝑧𝑧ᵢ))𝑘𝑘
𝑖𝑖=1                                (4) 

d. Update the model: 
𝐺𝐺𝑚𝑚(𝑧𝑧) =  𝐺𝐺𝑚𝑚−1(𝑧𝑧) + 𝛿𝛿𝑚𝑚𝑓𝑓𝑚𝑚(𝑧𝑧)                                                   (5) 

e. Apply regularization: 
• L1 Regularization (Lasso): 

𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑃𝑃 =  𝜌𝜌 ∑ |𝑤𝑤𝑗𝑗|𝑗𝑗        (6) 
• L2 Regularization (Ridge): 

𝑃𝑃𝑃𝑃𝑚𝑚𝑎𝑎𝑃𝑃𝑡𝑡𝑃𝑃 =  𝜎𝜎 ∑ 𝑤𝑤𝑗𝑗2𝑗𝑗        (7) 
f. Pruning (if the loss reduction is less than  𝜗𝜗, stop splitting): 

If Loss Reduction < 𝜗𝜗 the stop splitting 
3. Final model output: 𝐺𝐺𝑝𝑝(𝑧𝑧)   
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3.2. Support Vector Regressor (SVR) 
The Support Vector Machine (SVM) is a kernel function learning machine that adheres to the structural 
risk minimization principle (Vapnik et al., 1996). In addition to classification tasks, Support Vector 
Regression (SVR) is an extension of SVM for regression problems. SVR is particularly effective for 
capturing complex, non-linear relationships in hydrological data. The SVR model is a strong choice 
for smaller datasets and is less sensitive to outliers in the data. The SVR is generally less 
computationally expensive than the ML models. Detailed information of the SVR algorithm for the 
prediction of RWT can be found in Rajesh & Rehana (2021). 

 

Figure 2. Flow diagram for XGBoost and SVR regression model. 

4. RESULTS AND DISCUSSION 

The dataset used in this study contains daily minimum, maximum, and mean ATs, and the RWTs for the 
period from 1st January 1989 to 1st January 2004. The variability of ATs and RWT changes are visualized 
in Figure 3. To accurately predict RWT, the next step is to employ an appropriate ML model that ensures 
precise calibration and validation. In this study we have proposed the XGBoost model to predict the RWT 
and further compared the results with SVR model. First, we used the time-series splits cross-validation 
technique which trains on an initial small subset of data, estimates the subsequent data points, and adding 
them to the training set for the next iteration to provide an almost unbiased error estimate. We then used the 
GridSearchCV (Pedregosa et al. 2011) to evaluate all parameter combinations and selected the best one to 
optimize performance. Finally, we evaluated the ML models against acceptable performance measures, as 
shown in Figure 2. 
 

The performance of the XGBoost, and SVR models for daily, and monthly data at Shimoga station are 
provided in Table 1. From Table 1, XGBoost (R2 = 0.91, MSE = 0.62, RMSE = 0.78, MAE = 0.55, and 
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RSR = 0.30) model has performed slightly better than SVR (R2 = 0.89, MSE = 0.69, RMSE = 0.83, MAE 
= 0.60, and RSR = 0.32) for daily time scale. From Figure 4, ML results showed that the seasonal patterns 
of predicted RWT are almost synchronous and comparable with the observed values. Compared to the two 
ML models, XGBoost (R2 = 0.96, MSE = 0.21, RMSE = 0.46, MAE = 0.19, and RSR = 0.19) model has 
performed slightly better than SVR (R2 = 0.93, MSE = 0.38, RMSE = 0.61, MAE = 0.44, and RSR = 0.26) 
for monthly time scale.  The present study confirms the superiority of ML models in predicting RWT, 
aligning with earlier research findings based on Rehana (2019) and Rajesh & Rehana (2021) for the same 
case study. It can be noted that performance coefficients improved at the monthly time scale, showing higher 
R² and NSE, and lower RMSE and MAE values compared to the daily time scale. It can be noted that the 
improved ML model accuracy with monthly data, showing higher R² and NSE, and lower RMSE and MAE 
values compared to daily data due to taking the daily values into monthly totals (i.e., averaging all the daily 
values, the errors will be distributed and get better results). Overall, this case study demonstrates the 
potential of integrating scientific knowledge with ML tools to enhance RWT predictions. 

 

Figure 3. Time series of daily river water temperature, minimum air temperature, maximum air temperature, 
and average air temperature for the period 1989-2004. 

Table 1. Performance of ML model in the prediction of RWT. 

Data Model R2 MSE RMSE MAE RSR 
Daily SVR 0.89 0.69 0.83 0.60 0.32 

XGBoost 0.91 0.62 0.78 0.55 0.30 
Monthly SVR 0.93 0.38 0.61 0.44 0.26 

XGBoost 0.96 0.21 0.46 0.19 0.19 
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Figure 4: Comparison of time series results of observed, XGBoost and SVR predictions for Tunga-
Bhadra River, India. 

5. CONCLUSIONS  

This study aims to predict the RWT for the Tunga-Bhadra River basin using minimum, maximum, and 
average ATs with a ML model. The XGBoost model demonstrated superior performance on daily data and 
monthly data. The data-driven approach successfully predicted RWT, but the study has limitations, 
including reliance on data from 1989 to 2004, which is the only extensive period with sufficient data. The 
proposed RWT modelling framework can be updated with new data and extended to additional stations. 
Further research is needed on robust and hybrid approaches incorporating streamflow, solar radiation, and 
other factors. 
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